

CHI ARTMENT OF DEFENS

NASA Battery Workshop Huntsville, Alabama

November 17-19, 2009

by

Gerald Halpert¹, Kumar Bugga², Abhijit Shevade², Matthew K. Heun¹, Ralph White³, and Kerry T. Nock¹

¹ Global Aerospace Corporation, 711 West Woodbury Road, Suite H, Altadena, CA 91001 ² Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91006 ³ R. E. White & Associates LLC, 5 Brandywine Lane, Columbia, SC 29206

† - This work was funded by the Missile Defense Agency Small Business Technology Transfer Program under Contracts: W9113M-07-C-0186 and W9113M-08-C-0217.

Topics

- Overview
- Single Particle Model (SPM)
- Dakota Development
- Dakota Verification, Sensitivity Studies and Validation
- Summary

Overview

- **Program Objective -** Develop a unique object-oriented Li-Ion battery operations model, **Dakota**, based on first principles, that describes and predicts the performance of Li-Ion cells and batteries under various operational modes and environments
- Why GAC and JPL? GAC's object-oriented computer models of complex engineering systems. JPL's Li-lon expertise and LEO cycling cell test data.
- **Approach** Adapt SOA "first-principles" Single Particle Model (SPM) (Ralph White) into a cell / Battery Performance Prediction Operations Model. Verify model with LEO cycling cell test data.
- What's Unique? Developed from first-principles Dakota utilizes techniques developed for balloon flight and other prediction models. It is highly extensible and platform independent. Engineer-friendly simulation environment. Framework for a comprehensive battery model.

Long-term Goals for Battery Operations Model

- Simulate performance and life of a cell or battery
- Simulate changes during operation, e.g., cell or battery imbalance in series or parallel configurations
- Optimize cell / battery design and configuration
- Assess capability for a cell or battery design to meet a mission requirement
- Manage battery operation for long term success
- Assess new cell / battery technologies
- Design and size power subsystems
- Map and simulate manufacturing processes

Key Dakota Approach and Innovation

- Develop an object-oriented, desktop tool based on electrochemical first-principles, useable by system engineers. (not an esoteric Fortran code with text file configuration parameter lists)
- Incorporate simulation of individual cell charge and discharge characteristics and cycling performance
- Include simulation of orbital battery operations in LEO including thermal and mechanical interactions
- Provide a modular architecture that allows
 - A scalable user interface
 - Easy "what if" playing
 - New physics to be added now and in the future
 - Cell design parameters
 - Battery interactions with wide variety of environments

Battery Modeling Projects

Battery Modeling Projects

- Phase II STTR with JPL SPM Dakota
 - Single Particle Model (SPM) focused on LEO model development
 - Already incorporated into Dakota engine
 - Much faster than Full Physics Model (FPM)
 - Limited to low rates and nominal temperatures
 - In the prototype model development, we are extending the SPM to higher rates and a wider range of temperatures

Battery Modeling Projects

- Phase II STTR with JPL SPM Dakota
 - Single Particle Model (SPM) focused on LEO model development
 - Already incorporated into Dakota engine
 - Much faster than Full Physics Model (FPM)
 - Limited to low rates and nominal temperatures
 - In the prototype model development, we are extending the SPM to higher rates and a wider range of temperatures
- Phase I STTR with TTU RFM Dakota
 - Reformulated Model (RFM) focused on LEO model development
 - Faster than FPM and handles higher rates and a wider range of temperatures like the FPM
 - Higher fidelity at a cost of somewhat slower speed than SPM
 - In Phase I, RFM equations for three Li-Ion chemistries were incorporated into Dakota along with the LEO orbit scenario

Project Plans

- Selected Single Particle Model (SPM) of Ralph White (USC) as our first-principles model
- In Phase I, we developed a proof-of-concept tool based on the SPM
- Focused Single Particle Model (SPM) on LEO simulation development
- Validated operational performance based on NASA/JPL test data of the prismatic Mars Exploration Rover (MER) 8-AH-rated cell from Lithion
- In the Phase II prototype tool development, we are:
 - Extending the SPM to higher rates and a wider range of temperatures
 - Incorporating environment, cell interactions and operational factors

Single Particle Model (SPM)[†]

Dakota Development

- Incorporated the SPM into the Dakota engine
- Developed a graphical user interface (GUI)
- Developed cell and battery designer wizards
- Incorporated preliminary LEO cycling protocol
- Verified Dakota code against White's SP Fortran model of USG cell design
- Carried out sensitivity studies of discharge behavior as a function of rate constants and diffusion coefficient

SPM Dakota Verification for USG Cells: Discharge Voltage

10

JPL

Cathode Loading Sensitivity

SPM Dakota Validation Strategy

- Three Chemistries
 - Doyle-Newman* (D-N) Li_yMn₂O₄, Li_xC₆
 - USG Li_xCoO₂, Li_xC₆
 - JPLY LiNi_xCo_(1-x)O₂, Li_xC₆
- Incorporate cell chemistry and cell parameters into both JPL Dakota and a Full Physics Model (FPM)
- Validation Compare SPM Dakota results with
 - Doyle-Newman published results
 - JPLY LEO cycling data, and
 - COMSOL full-physics model results for all three chemistries

^{* -} Doyle-Newman, et. al, Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells, J. Electrotrochemical. Soc., Vol. 143, No. 6, June 1996

Doyle-Newman Comparison

0.1 C

Doyle-Newman Comparison (0.175 mA/cm^2)

Discharge Capacity [mAHr]

MER Chemistry: 100% DOD Discharge

MER Chemistry: LEO Cycling

Summary

- We have leveraged our simulation and Li-lon cell and battery expertise to develop a unique and advanced battery operations tool to predict life and performance
- Dakota tool adapts the first-principles SPM that has been verified with White's Fortran SPM-based cell model
- Our validation data compares very favorably with JPL's test data on the MER 8-Ah-rated Li-lon cells and published data on Li_yMn₂O₄, Li_xC₆ (Doyle-Newman chemistry)
- A model validation strategy has been formulated and is in the process of being implemented
- The SPM Dakota tool now can study three chemistries under LEO cycling conditions, i.e. Doyle-Newman, USG and JPL MER

Acknowledgement

Global Aerospace Corporation is appreciative of the support of MDA and specifically

Dr. Harlan Lewis for his direction